1から始める数学

数字の1を定義するところから始めて現代数学を築きます。ブログの先頭に戻りたいときは、表題のロゴをクリックして下さい。

ふたりの子供(その4)

 現在2025年8月17日11時04分である。(この投稿は、ほぼ3099文字)

 
『ふたりの子供(その2)』という投稿が、長くなり過ぎていたので、3つに切った。削除はしていない。



 ピラピラー

 現在は、2018年7月1日23時04分である。

麻友「戻ってきたわね」

私「スマホ、もらってきたな」

麻友「太郎さんは、前回、『現代論理学』もやるの? と、聞いたところから、ドラえもんの話になって、ここまで来てしまったわ」

私「小学校で習うのは、算数。中学で習うのは、三角比くらいまで。高校で習うのは、一次変換,複素数微積分くらいまで、大学で習うのは、現代数学。新しい学校へ移るたびに、ガラッと、内容が変化し、難しくなると思っている人は多い。そこで、小学校6年生の結弦、中学2年生の若菜、高校卒業の資格を持つ麻友さん、大学卒業の私と、4人で、数学の冒険をしようと、考えたんだ」

麻友「結弦が6年生で、若菜が中学2年生というのは、理由があるの?」

私「私の姪が、中学2年生で、甥が6年生なんだ。つまり、若菜と結弦のモデルは、姪と甥なんだ」


麻友「じゃあ、次回から、ゼミナールを始めるのね」

私「そうだよ」

麻友「じゃあ、おやすみ」

私「おやすみ」

 現在2018年7月2日0時06分である。おしまい。





私「これが、麻友さんと私のブログに、若菜と結弦という、娘と息子が、登場することになった、経緯なのである」

麻友「ほぼ完全に復習したわね。でも、私、いくら羽生結弦さんの名前をもらっているからって、息子に会って、絶句したりしないわよ」

私「ごめん、ごめん。麻友さんの心が、捉え切れてなくて」

麻友「でも、こうやって、半分現実を越えた方法を使って、まだ産んでもいない、子供達と、しゃべれるようにしてしまった。そしてその後には、難しくて解けなかった問題のひとつであった『初体験を、どう迎えるべきか?』という問いに、私と太郎さんが、本当の初体験を、子供達の前で見せる、ということで、模範解答を示すことになる」

私「ああ、それは、『女の人のところへ来たドラえもん』というブログの記事や、『相対性理論を学びたい人のために』というブログの、『ベートーヴェンピアノ三重奏曲第7番『大公』』という記事を、読んでもらうことにしよう」

麻友「えっ、もうああいう話は、なし?」

私「いや、他のブログでは、これまで通り書くけど、この『1から始める数学』というブログでは、当分書かないことにする。それぞれのブログのカラーを、はっきりさせて、どんどん記事が進むようにしたい」

麻友「朝ドラ、観てる?」

私「麻友さんの才能を、愛しているんじゃないからね。私は」

麻友「私だって、『ホーキング&エリス』が、失敗したって、太郎さんへの気持ちが、変わったりは、しないわ」

私「そう。そうこなくっちゃ」

麻友「今日の最後に、数学を、少しやったら?」

私「『女の人のところへ来たドラえもん』のときは、{1+1} をどうするか、というので、色々マジックをやったのだったね」

麻友「全部は、覚えてないけど、{1+1=1} とかに、なったのよね」

私「良く覚えてるね。このブログでは、同じことは、なるべくしないで、麻友さんに、数学というものが、こんな築き方もできるのか、と、視野を広げてもらおうと、思っている」

麻友「じゃあ、今回は、どう築くの?」


 注.

 この『ふたりの子供(その4)』という投稿で、今回は「『0から始める数学』を、始動する」と言って、すぐ『0』を使う数学を、築き始めようと、書いていた。だが、『0から始める数学』を、その後、『整数環』、『有理数体』、『真理のカメさん』、『超実数そして実数』と、続けて行くとき、この『1から始める数学』の自然数を、『宝塚の自然数』として引用するのが、望ましいことに、気付いた。そこで、以後に書かれていた文章を、ボツ原稿とし、*** と *** で、囲い、その後に、新しい記述を書いて、私達が、寄り道もしながら築いた、『1』から『0』を作る話を、書いていこうと思う。



*******************************
 以下、*** まで、ボツ原稿である。


私「{0} が、存在すると、納得するところまで、数学が進んだら、『0から始める数学』を、始動する」

麻友「{0} は、『女の人のところへ来たドラえもん』で、十分納得したわ。今すぐ始めても良いわ」

私「随分ドライなんだね」

麻友「太郎さんは、基礎に拘ってるけど、私は、分かりきったことは、どんどんスキップしたいの」

私「じゃあ、『ブルバキランダウ』のブログの記事で、出てきた、存在するという記号、『{\exists}』(イグジスト)や、任意のという記号、『{\forall}』(エニ)を、使い始めてみよう。そして、次のような集合が、存在するという公理を、天下りだが、一応認める。


 公理 {\mathrm{X.}} 空集合の存在

{\exists x \forall y ( y \notin x)}

任意の {y} について、{y} は、{x} の元にならないような、そんな {x} が、存在する。


麻友「つまり、中身のない集合が、存在するということね。だから空集合。ところで、{\mathrm{X.}} というのは?」

私「これ、私が、集合論の要点をまとめた、BGsummary.pdf というファイルでの、この公理の番号なんだ。どの記事を読んでいても、公理ではどうなっていたっけ、というとき、リンク集の『NKとBGの要点』を、見て欲しい。TeXファイルも公開してあるので、利用したければ、どうぞ」

麻友「そんなものまで、分からないけど、この公理は、太郎さんの順番で、10番目なのね」

私「そういうことだ」


 ここまでが、ボツ原稿です。

*******************************

 以下、正原稿です。


麻友「もう、眠くなってきたでしょう。今日は、これで、解放してあげる。やっぱり、一方的に、文章を読んで、勉強するより、対話形式だと、脱線もしたりして、楽しいわね」

私「だから、昔から、お金持ちのご子息や令嬢は、家庭教師を付けてもらってたんだ」

麻友「でも、私は、園智恵理(その ちえり)(アニメ『AKB0048』で、麻友さんが声優を担当したキャラクター)のように、お金持ちの家に生まれても、家を飛び出してでも、自分の実力で、勝負したかったかも」

私「家が貧しくて、そういう選択をしたくても、できなかった、たかみな(高橋みなみさん)のような人の気持ちは、私達は、本当には分かってあげられないよね。でも、今からでも、そういう不幸な家庭をなくすことは、できる。前向きに生きよう」

麻友「数学の記号は、全部でいくつ覚えればいいの?」

私「研究する分野ごとに、違うんだ。でも、Excelの関数の数より、遥かに少ないと思う。安心して」

麻友「分かったわ。じゃあ、おやすみ」

私「おやすみ」

 現在2019年8月2日22時15分である。おしまい。


 現在2023年11月24日19時30分である。『0から始める数学』を、急がず、後に『宝塚の自然数』と呼ぶようになる、『1』に拘った数学を展開できるよう、一部書き改めた。おしまい、